MYTHBUSTING Takes on Shielded Cabling

Herb Congdon Brian Davis

Objectives

 Take on myths of shielded cabling and use modern-day science to show what's real and what's fiction - through trial and error actually demonstrate it.

Shielded is century-old technology (1880)
 Dating back to early coaxial cabling


 Shielded Twisted-pair Cabling is over 25 years old
 Dating back to IBM Type I Cabling

- Wide industry experience with IBM Type 1
 - That experience was, admittedly, mostly negative
 - Partly why the industry preference moved to unshielded in North America ('cheap and easy' over 'high performance')

- Shielded technology has innovated, evolved and developed
 - Evidence of that has not been widely seen in North America due to the limited use of shielded cabling

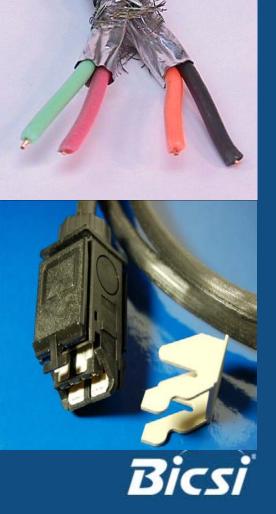
- So, the previous convictions of IBM Type 1 are still applied to all shielded cabling regarding:
 - Cable Termination
 - The Antenna Effect
 - Ground Loops
 - The Baked Potato Effect

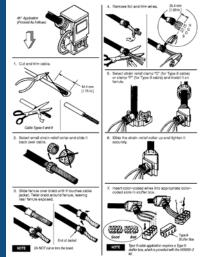
Cable Termination

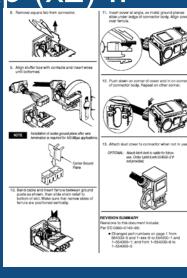
Cable Termination

• Myth:

- Terminating a shielded cable with a shielded connector takes twice as long as terminating an unshielded cable with an unshielded connector.




IBM Type 1 Cable


 Two shielded twisted pairs
 not four pair
 22 AWG solid copper conductors
 Braided shield

IBM Data Connector
 Hermaphroditic
 4 pole
 Large

- Data Connector Termination Procedure: 13 steps!
 - snip & cut, slide, twist, cut & trim, clamp, slide,
 insert (x4), pull, align & squeeze, ground,
 bend, slide, cover & snap (x2) !!

Today

- New cable types
 - Without braid
 - Unshielded pairs
 - Four-pair (not 2-pair)
- New connector types
 - Die-cast (without a "can")
- New installation tools
 - Simplify procedure
 - Faster

Experiment - Subjects

Shielded Termination

- IBM Type 1
 - 2-pair
 - S/FTP
- Category 6A
 - 4-pair
 - F/UTP

- Unshielded Termination
 - Category 6
 - 4-pair
 - U/UTP
 - Category 6A
 - 4-pair
 - U/UTP

Experiment - Setup

- Experienced Technicians
- Measure Time For
 - Cable Prep
 - Connector Prep
 - Termination
- Dependent Variables
 Cabling Type
 Termination Tool

Termination Tools

Punchdown Tool Each wire individually

Installation Tool

All wires
 simultaneously

Results – Category 6 Unshielded

Cable Type	Tool Type	Avg. Install Time
Cat6 U/UTP	Punchdown	2 minutes 🧳
IBM Type 1	Pliers/Snips	3 min 45 sec (2pr)

 Two times myth plausible for IBM Type 1 cable termination

- Maybe even 4 times
 - four pairs in over 7 minutes!

Results – Category 6A Punchdown

Cable Type	Tool Type	Avg. Install Time
Cat6 U/UTP	Punchdown	2 minutes 💡
Cable Type	Tool Type	Avg. Install Time
Cat6A U/UTP	Punchdown	3 min 15sec 🛛 💡
Cat6A F/UTP	Punchdown	3 min 20sec 🧳

 Two times myth plausible for <u>punchdown</u> cable termination

- More of a Cat 6A issue than shielded issue

• Tighter twists, larger wires, more fillers

Results – Category 6A Installation Tool

Cable Type	Tool Type	Avg. Install Time
Cat6 U/UTP	Punchdown	2 minutes 💡
Cat6A U/UTP	Punchdown	3 min 15 sec 🧳
Cat6A U/UTP	Install Tool	1 min 25 sec 🛛 🛶
Cat6A F/UTP	Install Tool	1 min 30 sec 🖌

• Even less than Category 6 punchdown!

Result: The Termination Time Myth

BUSTED!!

Additional Considerations

- Field Testing could make installation time worse for unshielded
 - depends on users choice of ANEXT testing options
- F/UTP vs. SF/FTP (Category 7)
 Category 7 (SF/FTP) would take longer
- Bonding and Grounding
 - No additional time compared to unshielded
 - Except for pulling back shield foil

The Antenna Effect

The Antenna Effect

• Myth

 The shield of a shielded cable acts like and antenna and collects radio frequency noise if it isn't grounded on both ends

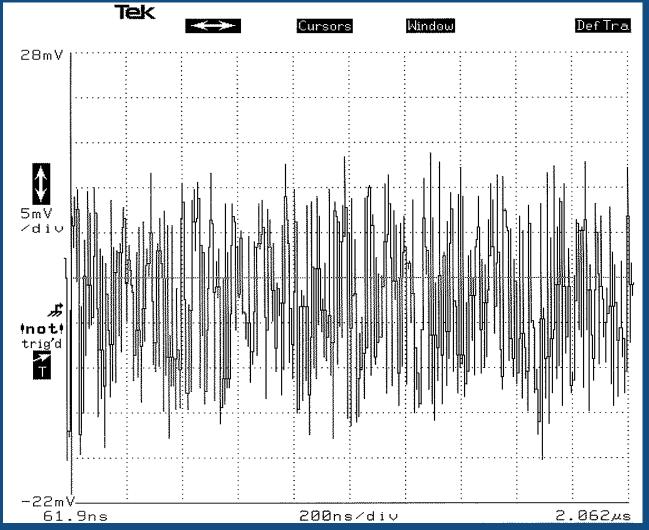
Experiment - Subjects

• U/UTP Cable

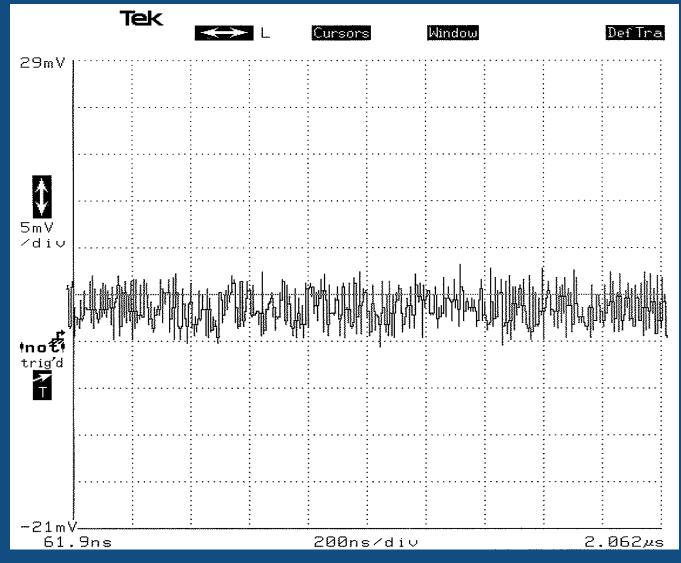
• F/UTP Cable

Experiment - Setup

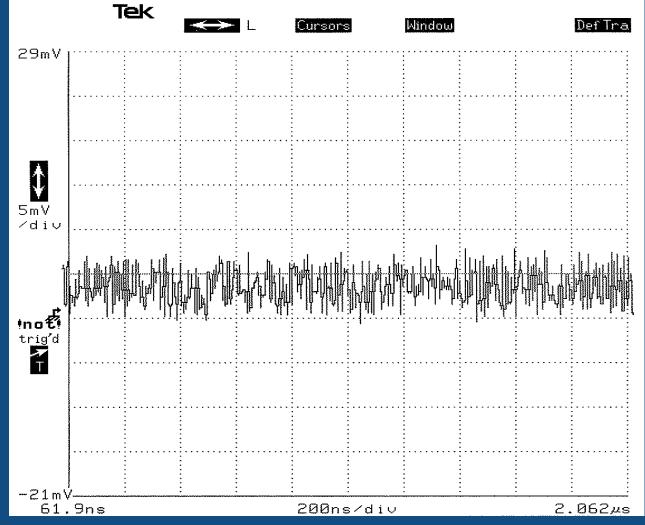
Noise Source


WAP (2GHz)
Laptop PC

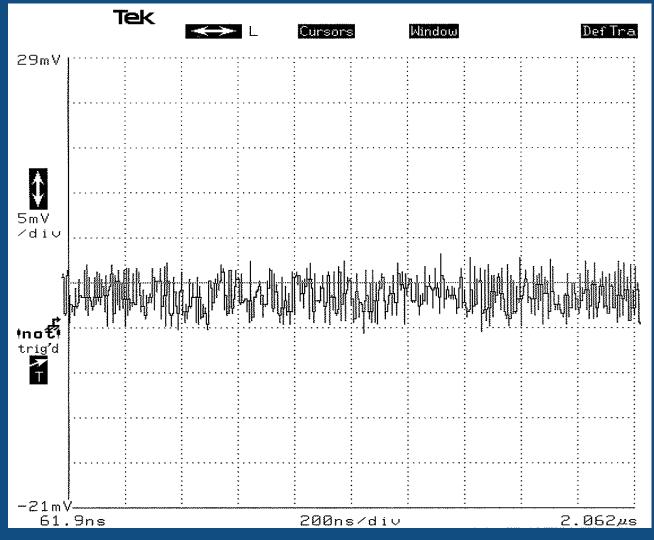
U/UTP Cable
F/UTP Cable
Network Analyzer



Results – Noise on Unshielded Cable



Results – Noise on F/UTP Cable with Both Ends Grounded


Bicsi

Results – Noise on F/UTP Cable with Single-ended Ground

Results – Noise on Ungrounded F/UTP Cable

Result: The Antenna Effect

BUSTED!!

Additional Considerations

- All metallic elements act as antennas to some extent – even pairs in an unshielded cable
- The shield dramatically reduces the effects of RFI on the pairs, even if grounded on only one end or if ungrounded!
 - But ground it anyway!
- A shield reduces the effects of induced noise for signals > 30 MHz
 Shield thickness property

Ground Loops

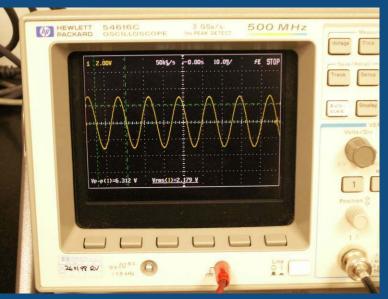
Ground Loops

• Myth

 Conductive loops transmit spurious current (noise) if there is any variation in voltage along the loop

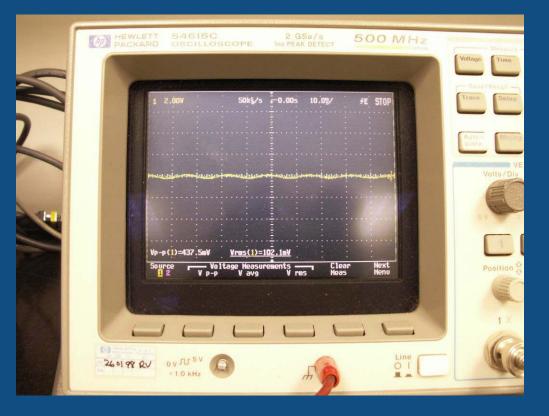
Myth probably outgrowth of "mains hum"

- Two pieces of audio equipment plugged into different power outlets with different ground potentials
- This potential difference causes a spurious current to flow through the cables, creating an audible buzz


Experiment - Subjects

• F/UTP Cable

Experiment - Setup


- Apply 60 Hz AC current directly onto shield of F/UTP cable
 - Not an induced current
 a <u>placed</u> current
- Test signal integrity on balanced twisted-pairs for presence of 60Hz influence

Results

 No influence on signal integrity at 60Hz

Result: Ground Loops

BUSTED!!

Additional Considerations

- Basically proves that balance works, at least for 60Hz (low frequency)
 - Audio cables tend not to be balanced or shielded
- Higher frequency effects reduced by the shield

The Baked Potato Effect

The Baked Potato Effect

• Myth

 The shield around a shielded cable is just like aluminum foil around a baked potato — it traps generated heat and cooks the cable

Research

- Wrapping the potato in aluminum foil before cooking will help to retain moisture
- When cooking over an open fire or in coals, a jacket of foil prevents burning
- Aluminum foil is designed to keep moisture in the baked potato – not to retain heat

Research

- Power over Ethernet
 - Data cables used for signal and for power
 - Power current creates heat via I²R losses
- Power over Ethernet Plus
 - More power more current more heat

Experiment - Subjects

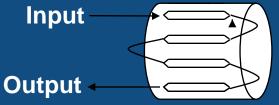
• U/UTP Cable

• F/UTP Cable

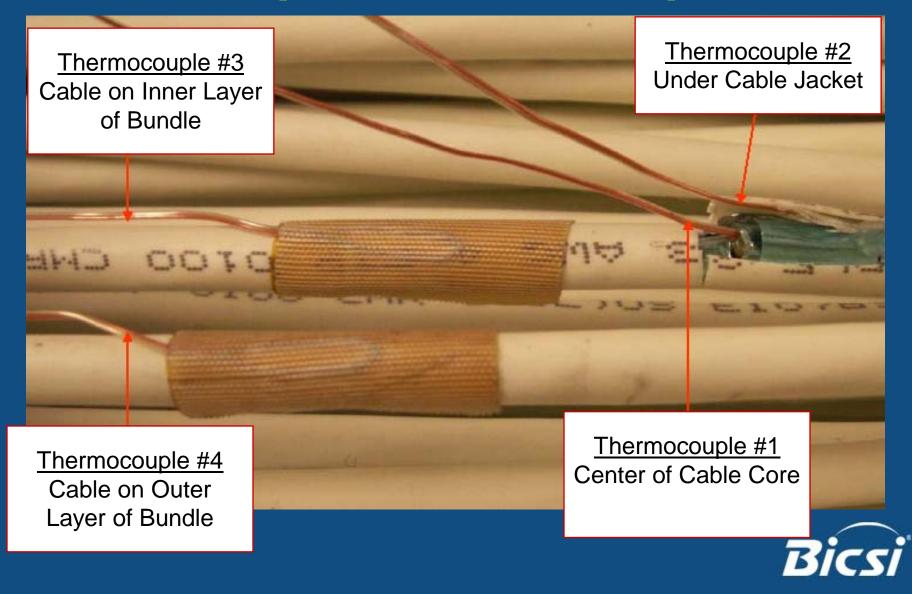
Experiment - Setup

Cable bundles

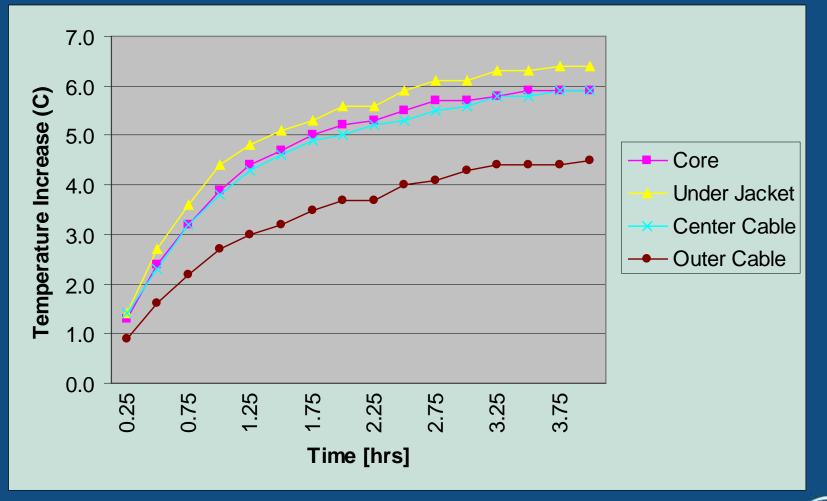
In insulated conduit, with firestopping



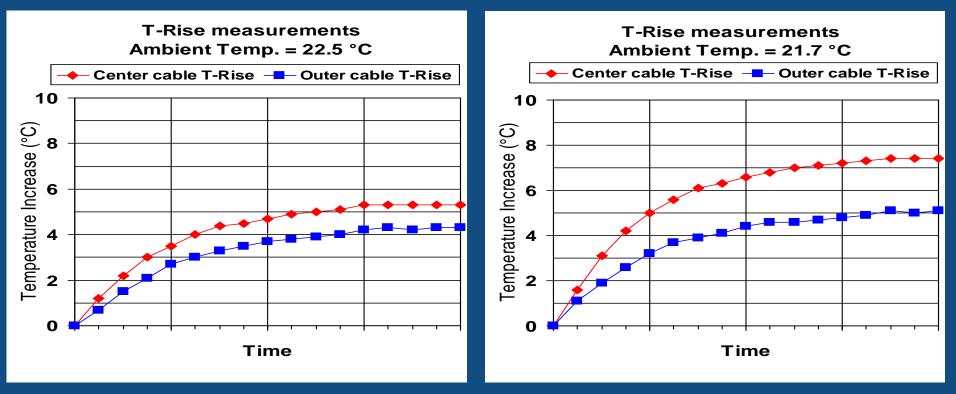
Experiment - Setup


Worst case

- Place 720 mA current (original PoEP objective)
 - The objective for PoEP is currently only 600mA
- 57 V_{dc} measured at output end of cable (not source)
- Power on all four pairs
- Pairs wired in series



Experiment - Setup



Results – F/UTP Shielded Cable

Results – F/UTP and U/UTP Cable

F/UTP Cable

U/UTP Cable

Results – 720mA

Cable Type	Steady-state Temperature Rise
F/UTP	6°C
U/UTP	7°C

- Both show increase
- Shielded compares favorably

Result: The Baked Potato Effect

BUSTED!!

Additional Considerations

- Unlikely to see that kind of temperature rise in the field
 - Lower current than POEP objective
 - Violation of fill ratios
 - All four pairs carrying max power
 - Max power measured at device end, not source end

Conclusions

Review

Myth	Conclusion
Termination Time = x^2	BUSTED !!
Antenna Effects = Bad	BUSTED !!
Ground Loops = Bad	BUSTED !!
Baked Potato Effect = Hot	BUSTED !!

Thank You!

Remember: These are trained professionals – do not try this at home!

No animals (or potatoes) were harmed in this production

